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Combined microfluidic/batch conditions were applied to β-mannosylation, a key gly-
cosylation for the synthesis of the Manβ(1-4)GlcNAc motif in N-glycan structures. By
applying the advantageous features of microfluidic conditions (i.e., efficient mixing and
fast heat transfer), the Manβ(1-4)GlcNTroc fragment was practically and reproducibly
synthesized on the gram scale.

Keywords β-Mannosylation; Manβ(1-4)GlcNAc fragment; Microreactor; N-glycan

Stereoselective formation of the β-mannoside linkage, a key glycosylation
in the synthesis of the Manβ(1-4)GlcNAc unit of N-linked glycoproteins,[1,2]

is a challenging topic in oligosaccharide synthesis. Various methods,[1,3−11]
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2 K. Tanaka et al.

such as intramolecular aglycon delivery (IAD)[12−14] or glycosylation with
4,6-O-benzylideneacetal-protected α-mannosyltriflates,[15] have recently been
reported and successfully applied to β-mannoside synthesis. We have been in-
vestigating the efficient synthesis of the Manβ(1-4)GlcNAc motif as part of
our research on solid-phase synthesis of N-glycan[16]. We have achieved an ex-
cellent β-selectivity in the reaction of 4,6-O-benzylidene-mannopyranosyl-N-
phenyltrifluoroacetimidate 1 (C4–OBn or C4–ORZClBn4 see respective struc-
tures) with N-Troc-glucosamine acceptor 2 (93% yield, β:α = 95 : 5) (Sch. 1)[17]

using the bulky and dual Lewis acid/cation trap reagent TMSB(C6F5)4.18
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Scheme 1: Previous β-mannosylation using TMSB(C6F5)4 and TMSOTf as activators.
Glycosylation is performed using 1.5 equiv of donor 1 relative to acceptor 2.

Nevertheless, it is difficult to apply our β-mannosylation protocol to a few
gram-scale synthesis of Manβ(1-4)GlcNTroc fragment 3 because the scaled-up
glycosylation requires a large quantity of the bulky TMSB(C6F5)4 activator,
which has limited commercial availability.[17,18] Therefore, from a practical
viewpoint for preparing Manβ(1-4)GlcNTroc as a starting material, we re-
focused on applying more common TMSOTf as a glycosyl activator because
our earlier experiments[17] indicated that TMSOTf shows a good yield and β-
selectivity on a 20-mg scale (90% yield, β:α = 93:7) (Sch. 1).

However, the efficiency of glycosylation is extremely sensitive to the re-
action scale as well as the addition speed of the Lewis acid (Table 1). When
TMSOTf was added dropwise to a solution of mannosyl donor 119 and accep-
tor 2 at –78◦C, the yield of β-mannoside 3 gradually decreased as the reac-
tion scale increased (entries 1–3). On a 50-mg scale, 63% of β-disaccharide 3
was isolated, whereas only 27% of β-isomer 3 was obtained on a 500-mg scale
(entries 1 and 3; yield for isolated β-mannoside is shown in the table). For
an unknown reason, slowly adding a Lewis acid in the larger-scale reactions
inhibited the glycosylation process at an earlier stage.[20] Moreover, even the
subsequent addition of the TMSOTf catalyst did not activate the glycosyla-
tion between the remaining starting materials. On the other hand, when the
acid was added to the initial solution of 1 and 2 in one portion, mannosylation
proceeded smoothly (entry 4). However, the β-selectivity decreased to 4.9:1,
presumably due to the exothermic nature of the reaction—that is, heat is gen-
erated while rapidly mixing, which leads to an overall decrease in the isolated
yield of β-disaccharide 3 (61% on 900-mg scale).
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Microfluidic β-mannosylation 3

Table 1: β-Selective mannosylation using TMSOTf as an activatora

1

CH2Cl2, MS4A

O

AzClBnO

OBn
O

O
Ph

O CF3

N
Ph

O
BnO

TrocHN
OAllyl

BnO

HO

O

AzClBnO

OBn
O

O
Ph

O

BnO
TrocHN

OAllyl

BnO

O

2

3

20~30 mol% TMSOTf

Entry Addition of LA Scale (mg) Yield (%)b

1 dropwise 50 63
2 dropwise 300 48
3 dropwise 500 27
4 In one portion 900 61a

aReaction is performed using 1.5 equiv. of donor 1 relative to acceptor 2.
bIsolated yields for β-isomer.
cβ:α = 4.9:1 based on 1H NMR analysis.

Therefore, we decided to examine the microfluidic conditions based on the
observations shown in Table 1, which indicate that the current glycosylation
is sensitive to the addition speed of the Lewis acid (i.e., slow or fast mixing),
as well as the reaction scale. A continuous-flow microreactor, which has been
reported to realize efficient mixing and a fast heat transfer, has been recog-
nized as innovative technology in recent organic syntheses.[21,22] In addition,
a flow system allows the residence time to be controlled. Hence, this method
is well-suited for reactions with unstable intermediates. Once reaction condi-
tions are optimized for a small-scale operation, the same conditions are directly
applicable to large-scale synthesis under the flow process. By taking advan-
tage of these aspects, we have recently applied a microfluidic system to cation-
mediated reactions[23] and have realized improvements for α-sialylation,[23(b)]

dehydration,[23(c)] and reductive opening of the benzylidene acetal groups in
sugar.[23(d)] Because the inefficiency of these cation-mediated reactions under
the batch process is due to inefficient mixing with the acid reagents on a large
scale, we envisioned that microfluidic conditions might also circumvent the
scaling-up problems associated with the β-mannosylation observed in Table 1.
Herein, we report the practical synthesis of the Manβ(1–4)GlcNTroc fragment
via microfluidic β-mannosylation catalyzed by TMSOTf as a common glycosyl
activator. This method was used to prepare β-mannoside disaccharide 3 on a
few gram scales, but could be used on a larger scale and readily be applicable
to N-glycan synthesis.

As shown in Table 2, we initially constructed the microfluidic system based
on our previous experiences with microfluidic α-sialylation.[23(b)] In addition to
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Table 2: β-Mannosylation under microfluidic conditions

2 (50 mM)
in CH2Cl2
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O
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HO O
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TrocNH
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TMSOTf in CH2Cl2 (30 mM)

Micromixer

O
OBnO

O
BnO

Ph

O O
BnO

TrocNH
BnO

OAllyl

φ = 1.0mm
l = 1.0 m

Donor and Acceptor
Lewis acid

0.2 mL/min

0.2 mL/min

factor 1

XX °C

1 (100 mM)

Entry Temp Yield (%)a : b

1 –78°C

2 –50°C

17

38 2.1:1

2.3:1

3 –20°C 48 1.8:1

a Isolated yields as a mixture of - and -isomers.
b 1H NMR and HPLC analyses determined the / -ratio.

factor 3

factor 4

factor 5

factor 2

3.9 min

3

the aspects mentioned above, an attractive feature of the microfluidic reaction
is that the reaction can be readily optimized under the flow process;[22(d)] the
optimal conditions are rapidly determined using a small quantity of materials,
that is, concentrations of the substrates, mixing speed, temperature, and res-
idence time (optimization factors 1–5 in Table 2). Thus, a dichloromethane
solution of mannosyl donor 1 and glucosaminyl acceptor 2 with various con-
centrations (optimization factor 1) was mixed with a TMSOTf solution in
dichloromethane to determine the optimal concentration (factor 2) at the ap-
propriate temperature (factor 3) using a Comet X-01 micromixer[24] at various
flow rates (factor 4). After the reaction mixture was allowed to flow at an appro-
priate time interval (factor 5) through a reactor tube (� = 1.0 mm), the mixture
was quenched by introducing a triethylamine solution in dichloromethane.

By using such a microfluidic apparatus, we investigated more than 30 con-
ditions in a combinatorial fashion. Table 2 shows representative data when the
flow rate was fixed at 0.20 mL/min, and the concentrations of donor 1, acceptor
2, and TMSOTf were adjusted to 100 mM, 50 mM, and 30 mM, respectively.
When micromixing and the flow reaction occurred at –78◦C, a mixture of α/β-
disaccharide 3 was obtained in only 17% yield (β:α = 2.3:1, entry 1). Although
increasing the temperature further improved the yield of 3, the β-selectivity
decreased (entries 2 and 3); α/β mixture of 3 was obtained in 38% at –50◦C
with β:α = 2.1:1, but in 48% at –20◦C with β:α = 1.8:1.
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Microfluidic β-mannosylation 5

Figure 1: β-Mannosylation using an integrated microfluidic/batch system. Yield and β/α ratio
are analyzed by 1H NMR, HPLC (column: nacalai tesque 5C18-AR300. 4.6 × 250 mm; MeCN
in H2O[55–100% gradient over 60 min]; retention time of the β-isomer: 46.3 min. α-isomer: 48.6
min), as well as TLC stain contrast detected by Image J 1.40 (eluent; toulene:AcOEt:10:1).

The preliminary optimization performed in Table 2 demonstrated that both
the β-selectivity and yield may further be improved by (1) micromixing the sub-
strates and acid solutions at a lower temperature and (2) a longer reaction time
(residence time) at a higher temperature after micromixing. Although it is the-
oretically possible to maintain an indefinite residence time by increasing the
reactor tube length, in certain conditions (i.e., when the reaction has to pro-
ceed for more than an hour), employing an extremely long tube is impractical.
Therefore, as shown in Figure 1, we constructed an apparatus where the mi-
crofluidic system is integrated with a conventional batch apparatus. Namely,
the reaction solution through the micromixing system was subsequently in-
serted into the batch system, and then was conventionally stirred in a flask for
a few hours to complete the reaction.

Thus, glycosylation trials in the integrated microfluidic/batch apparatus
led to the determination of the optimal conditions: micromixing at –90◦C and
a batch reaction at –50◦C for 3 h. Further adjustments of the microfluidic pa-
rameters (i.e., concentration of substrates and flow speed), as depicted in Fig-
ure 1, provided α/β-mannoside 3 in 92% yield and with a moderate β-selectivity
(β:α = 5.0:1).25

It should be noted that although the β-selectivity was somewhat lower than
that observed in the small-scale batch reaction (Sch. 1), β-mannoside 3 could
be obtained in a similar efficiency (77% for microfluidic reaction versus 84%
for 20-mg scale batch reaction). Moreover, under the microfluidic mannosy-
lation conditions, Manβ(1–4)GlcNTroc fragment 3, which is easily separated
from the α-isomer by column chromatography, was reproducibly obtained even
in the scaled-up synthesis (Experimental section) by simply preparing stock so-
lutions of substrates and reagents, and then continuously pumping them into
the integrated microfluidic/batch system.

In summary, we have established a practical β-mannosylation under an
integrated microfluidic/batch system. In addition to realizing efficient mix-
ing and precise temperature control for β-mannosylation, an advantage of
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6 K. Tanaka et al.

utilizing microfluidic reactions is the rapid determination of the optimal condi-
tions. Although perfect β-glycosyl bond formation was not realized by adjusting
the microfluidic parameters, the reproducibility and scaled-up preparation of
Manβ(1-4)GlcNTroc fragment 3 under the flow process is noteworthy from the
viewpoint of preparing an important starting material for complex oligosac-
charide synthesis.

EXPERIMENTAL SECTION

Allyl 4-0-[3-0-(4-Azido-3-chlorobenzyl)-4,6-0-benzylidene-2-0-
benzyl-α-D-mannopyranosyl]-3,6-di-O-benzyl-2-deoxy-2-
(2,2,2-trichloroethoxycarbonylamino)-α-D-
glucopyranoside (3)
A solution of TMSOTf (92.7 µL, 0.513 mmol, 13.5 mM) in CH2Cl2 (38.0

mL) was injected, in advance, into the micromixer by a syringe-pump at a flow
rate of 0.95 mL/min. Then a solution of donor 1 (C4-OAzClBn, 1.98 g, 2.85
mmol, 75.0 mM) and acceptor 2 (1.09 g, 1.90 mmol, 50.0 mM) dissolved in
CH2Cl2 (38.0 mL) was injected into the micromixer by another syringe-pump
at a flow rate of 0.5 mL/min. The reaction was mixed at –90◦C. After the re-
action mixture was allowed to flow at –90◦C for an additional 94 s through
a Teflon tube reactor (� = 1.0 mm, l = 1.0 m), the mixture was introduced
into a flask, which was previously cooled to –50◦C. The reaction mixture was
stirred for 4 h at this temperature, and the mixture was quenched by tri-
ethylamine at –50◦C. The resulting mixture was extracted with ethyl acetate,
washed with brine, dried over Na2SO4, filtered, and concentrated in vacuo to
give the crude product. The residue was purified by column chromatography
on silica gel (13% ethyl acetate in toluene) to give β-mannoside 3 as a color-
less oil (1.34 g, 67%): ESI-MS m/z calcd for C53H55Cl4N4O12 (M+H)+ 1079.2,
found 1079.2; 1H NMR (400 MHz, CDCl3, data for β-anomer) δ 7.40–7.03 (m,
23H, aromatic), 5.95–5.86 (m, lH, CH2 CH=CH2), 5.46 (s, lH, PhCH-), 5.30
(dd, J = 17.3, 1.5 Hz, 1H, CH2 CH=CH2), 5.24 (dd, J = 10.3, 1.0 Hz, 1H,

CH2 CH=CH2), 5.04 and 4.67 (each d, Jgem = 11.5 Hz, 2H, CH2Ph), 5.01 (d,
JN,2 = 10.0 Hz, 1H, NH), 4.92 (d, J = 3.4 Hz, 1H, H-1), 4.82 (s, 2H, CH2Ph),
4.73 and 4.37 (each d, Jgem = 12.0 Hz, 2H, CH2Ph), 4.67 and 4.64 [each d,
Jgem = 12.2 Hz, 2H, CH2-(C6H3N3Cl)], 4.62 and 4.59 (each d, Jgem = 12.7
Hz, 2H, NH COO CH2 CCl3), 4.67 (s, 1H, H-1′), 4.09 (dd, J = 12.3, 5.1 Hz,
1H, CH2CH=CH2), 4.06–3.93 (m, 5H, CH2 CH=CH2, H-2, H-4, H-4′,H-6′a),
3.70–3.57 (m, 5H, H-3, H-4, H-6a, H-6b, H-2′), 3.45 (t, J = 10.3 Hz, 1H, H-6′b),
3.37 (dd, J =9.5, 2.9 Hz, 1H, H-3′), 3.07 (td, J = 9.5, 4.9 Hz, 1H, H-5′).
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